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Introduction to Longitudinal Data Analysis Using the Traumatic Brain Injury 
Model Systems National Database 
Prepared by Jessica M. Ketchum from the Traumatic Brain Injury Model Systems National Data 
and Statistical Center 

Methodology described in these Training Courses is primarily taken from two sources, with 
additional references cited throughout: 

 Chapters 4 and 5 in Hedeker and Gibbons (2006), Longitudinal Data Analysis, Wiley 

 Hedeker (2004) Chapter 12: An Introduction to growth modeling, In D. Kaplan (Ed.) 
Quantitative Methodology for Social Sciences. Thousand Oaks CA: Sage. 

Dr. Hedeker and his colleagues have done an excellent job describing methodology for 
longitudinal data analysis (LDA) to researchers in the biomedical and behavioral science field 
with the least amount of technicality needed while emphasizing critical concepts with 
applications. As such, there is no need to reword much of what he has so eloquently described. 
With the Traumatic Brain Injury Model Systems (TBIMS) researchers in mind, both with novice 
and advanced statistical training, I have expanded on some parts of his methodical description, 
condensed others, and applied the methodology to a large sample of subjects in the TBIMS 
National Database (NDB). 

These Training Courses are presented as a series and have been developed to educate TBIMS 
researchers on the different concepts of LDA starting with the most basic extension from simple 
linear regression and working towards more advanced concepts. A webinar is being prepared 
for each Training Course and will be presented to TBIMS researchers through the TBIMS 
Analytic Special Interest Group (SIG). All presentations, course notes, data files, and SAS code 
will be available for download through the TBIMS NDSC website 
(https://www.tbindsc.org/Researchers.aspx). Questions on course material or individual 
consultation for research projects involving LDA and the TBIMS NDB should be directed to Dr. 
Ketchum (jketchum@craighospital.org). While we do our best to respond to all questions and 
requests, priority is given to TBIMS internal researchers (including Committees, Modules, and 
SIGs), followed by external researchers with submitted requests for use of the TBIMS NDB, and 
last by external researchers looking to apply these methods to future projects with the TBIMS 
NDB. 

LDA Training Course 1: Extending Simple Linear Regression Model to Mixed-Effects 
Regression Model 
The Traumatic Brain Injury Model Systems (TBIMS) National Database (NDB) is the largest 
longitudinal study on TBI outcomes in the world. Perhaps the most salient characteristic of the 
TBIMS NDB is its longitudinal nature, containing valuable information regarding both between 
and within subject change in outcomes over time. One of the most useful strategies for 
analyzing these data are methods for longitudinal data analysis (LDA). A unique characteristic of 
LDA is its ability to account for the correlations in repeated measures of subjects over time. This 
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training course as a whole aims to guide the researcher through the different concepts of LDA, 
starting with the most basic extension of LDA from simple linear regression. We will build upon 
this basic model using the TBIMS NDB for demonstration. As the goal is to build upon our 
knowledge, examples using the same outcome will be carried through as extensions are made; 
alternative outcomes and covariates will be introduced as needed in later Training Courses. 

Introduction 

Longitudinal studies are very common in social science research and the methods to analyze 
longitudinal data are seeing increasing use in rehabilitation research, particularly using the 
TBIMS NDB. In longitudinal studies, subjects are measured repeatedly over time, and interest is 
often focused on characterizing their change, or growth, across time. 

Traditional analysis of variance (ANOVA) methods for growth curve analyses are described in 
Bock (1975); however, these methods are of limited use due to restrictive assumptions 
concerning missing data across time and the variance-covariance structure of the repeated 
measures. The univariate mixed-model analysis of variance assumes that the variances and 
covariances of the dependent variable across time are equal (i.e., compound symmetry). The 
multivariate analysis of variance for repeated measures only includes subjects with complete 
data across all time points. Also, these traditional methods primarily focus on estimation of 
group trends across time and provide little help in understanding how specific individuals 
change over time. For these reasons, mixed-effects regression models (MRMs) have become 
the methods of choice for modeling longitudinal data. 

Variants for MRMs have been developed under a variety of names: 

 random-effects models (Laird & Ware, 1982); 
 variance component models (Dempster, Rubin, & Tsutakaw, 1981); 
 multilevel models (Goldstein, 1995); 
 hierarchical linear models (Bryk & Raudenbush, 1992); 
 two-stage models (Bock, 1989a); 
 random coefficient models (de Leeuw & Kreft, 1986); 
 individual growth curves (Bock & Thissen, 1980, Goldstein, 1981); 
 mixed models (Longford, 1987; Wolfinger, 1993); 
 empirical Bayes models (Hui & Berger, 1983; Strenio, Weisberg, &Bryk, 1983); and 
 random regression models (Bock, 1983a; 1983b; Gibbons, Hedeker, Waternaux, & Davis, 

1988). 

A basic characteristic of all of these models is the inclusion of random subject effects into the 
regression model framework in order to account for the influence of subjects on their repeated 
observations. These random-effects describe each person’s trend across time and explain the 
correlational structure of the longitudinal data. Additionally, they indicate the degree of subject 
variation that exists in the population of subjects. 

Several features make MRMs especially useful in longitudinal research. First, subjects are not 
assumed to be measured on the same number of time points; thus, subjects with incomplete 
data across time are included in the analysis. This is an important advantage relative to 
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procedures that require complete data across time for two reasons: (a) by including all data the 
analysis has increased statistical power, and (b) complete case analysis may suffer from biases 
to the extent that subjects with complete data are not representative of the larger population 
of subjects. A second important feature is that time is modeled as a continuous variable, so 
subjects do not need to be measured at the same time points. This is useful in longitudinal 
studies when follow-up times are not uniform across subjects. Third, both time-invariant and 
time-variant covariates can be included in the model. Thus, changes in the outcome variable 
may be due to both stable characteristics with time (e.g., sex or race) as well as characteristics 
that change across time (e.g., changing functional status, life events). Finally, whereas 
traditional approaches estimate average change across time in a population, MRM can also 
estimate change for each subject. These estimates of individual change across time can be 
particularly useful in longitudinal studies, where a proportion of subjects exhibit change across 
time that deviates from the average trend. 

These LDA Training Courses will focus on describing MRMs for continuous outcomes in a very 
practical way. We will illustrate how MRMs can be seen as an extension of an ordinary (simple) 
linear regression model. Starting here, the model will be slowly extended and described, 
guiding the reader from more familiar to less familiar territory. Following a description of the 
statistical model and extension presented, two MRM example analyses will be presented using 
the TBIMS NDB. As we further develop the model to handle more complexities, these example 
analyses will illustrate many of the key features of MRMs for longitudinal data analysis that can 
be applied using the TBIMS NDB and other longitudinal research studies. 

A Simple Linear Regression Model 

To introduce MRMs, consider a simple linear regression model for the measurement y of 
individual i (i = 1, 2, …, N subjects) on occasion j (j = 1, 2, …, 𝑛  occasions): 

𝑦 = 𝛽 + 𝛽ଵ𝑡 + 𝜀.       (1) 

Ignoring subjects, this model represents the regression of the outcome variable y on the 
independent variable time (denoted by t). The subscripts keep track of the particulars of the 
data, namely whose observation it is (subscript i) and when this observation was made 
(subscript j). The independent variable t gives a value to the level of time, and may represent 
time in days, weeks, months, years, etc. Since y and t carry both i and j subscripts, both the 
outcome variable and the time variable are allowed to vary by individuals and occasions. 

In linear regression models, the errors 𝜀 are assumed to be normally and independently 
distributed in the population with mean of zero and variance 𝜎ଶ. The independence assumption 
makes the model given in (1) an unreasonable one for longitudinal data. This is because the 
outcomes y are observed repeatedly from the same individual, and so it is much more 
reasonable to assume that the errors within an individual are correlated to some degree. 
Furthermore, the above model assumes that the growth, or change across time, is the same for 
all individuals because the model parameters describing growth (𝛽, the intercept or initial 
level, and 𝛽ଵ, the linear change across time) do not vary by individuals. For both of these 
reasons, it is useful to add individual-specific effects into the model that will account for the 
data dependency and describe differential growth for different individuals. This is precisely 
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what MRMs accomplish. The essential point is that MRMs can be viewed as augmented linear 
regressions models. 

Random-Intercept Mixed Regression Model 

A simple extension of the regression model given in (1) to allow for the influence of each 
individual on their repeated outcome is provided by 

𝑦 = 𝛽 + 𝛽ଵ𝑡 + 𝜐 + 𝜀,       (2) 

where 𝜐 represents the influence of individual i on their repeated observations. Notice that if 
individuals have no influence on their repeated outcomes, then all of the 𝜐 terms would equal 
0. However, it is more likely that repeated observations for a given subject will be correlated 
with either a positive or negative association, and so the 𝜐 terms will deviate from 0. 

To better reflect how this model characterizes an individual’s influence on their observations, it 
is helpful to represent the model in a hierarchical linear model (HLM) or multilevel form 
[Goldstein, 1995; Raudenbush and Bryk, 2002]. For this, it is partitioned into the within-subjects 
(or Level 1) model, 

𝑦 = 𝑏 + 𝑏ଵ𝑡 + 𝜀,       (3) 

and the between-subjects (or Level 2) model, 

𝑏 = 𝛽 + 𝜐,        (4) 

𝑏ଵ = 𝛽ଵ. 

Here, the Level 1 model indicates that individual i’s response at time j is influenced by their 
initial level 𝑏 and time trend, or slope, 𝑏ଵ. The Level 2 model indicates that the individual i’s 
initial level (intercept) is determined by the population initial level 𝛽, plus a unique 
contribution for that individual 𝜐. Thus, each individual has their own distinct level. 
Conversely, the present model indicates that each individual’s slope is the same; all are equal to 
the population slope 𝛽ଵ. Another way to think about this is that each person’s trend line is 
parallel to the population trend determined by 𝛽 and 𝛽ଵ. The difference between each 
individual’s trend and the population trend is 𝜐, which is constant across time. 

The between-subjects, or Level 2, model is sometimes referred to as a “slopes as outcomes” 
model (Burstein, 1980). The HLM representation shows that just as within-subjects (Level 1) 
covariates can be included in the model to explain variation in Level 1 outcomes (𝑦), between-
subjects (Level 2) covariates can also be included to explain variation in Level 2 outcomes (the 
subject’s intercept  𝑏 and slope 𝑏ଵ). Note that combining the within- and between-subject 
models (3) and (4) yields the previous single-equation model (2). 

Because individuals in a sample are typically thought to be representative of a larger population 
of individuals, the individual-specific effects 𝜐 are treated as “random-effects”. That is, 𝜐 are 
considered to be representative of a distribution of individuals in in the population. The most 
common form for this population distribution is the normal distribution, with mean 0 and 
variance 𝜎జ

ଶ. In the model given by equation (2), the errors 𝜀 are now assumed to be 
conditionally independently distributed in the population with zero mean and common variance 
𝜎ଶ. Conditional independence here means conditional on the random individual-specific effects 
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𝜐. Because the errors now have an influence due to the individuals removed from them, this 
conditional independence assumption is much more reasonable than the ordinary 
independence assumption associated with the simple linear regression model in (1). 

A graphical representation of the random intercept MRM is shown below in Figure 1.  

Figure 1: Random Intercept Model 

 
Here, individuals deviate from the regression of y on t in a parallel manner since there is only 
one subject effect 𝜐. Thus, it is often referred to as a “random-intercepts model”, with each 
𝜐 indicating how individual i deviates from the population trend. In this figure, the solid line 
represents the population average trend, which is based on 𝛽 and 𝛽ଵ. Also depicted are two 
individual trends, one below and one above the population trend, shown with different dashed 
lines. For a given sample, there is a line for each individual in the sample. The variance term 𝜎జ

ଶ 
represents the spread of these lines from the population line. If 𝜎జ

ଶ is near zero, then the 
individual lines would not deviate much from the population trend. In that case, individuals do 
not exhibit much heterogeneity in their change across time. Alternatively as individuals differ 
from the population trend, the lines move away from the population trend line and 𝜎జ

ଶ 
increases. In this case, there is more individual heterogeneity in time trends. 

Compound Symmetry and Intraclass Correlation 

The random-intercept model implies a compound symmetric association for the variances and 
the covariances of the longitudinal data. That is, the variances and covariances are assumed to 
be the same, namely 

𝑉൫𝑦൯ = 𝜎జ
ଶ + 𝜎ଶ,        (5) 

𝐶𝑜𝑣൫𝑦 , 𝑦ᇱ൯ = 𝜎జ
ଶ,   where 𝑗 ≠ 𝑗′ 

Thus, the variance of any observation is expressed as 𝜎జ
ଶ + 𝜎ଶ, and the covariance between any 

two observations from the same subject at different timepoints is expressed as 𝜎జ
ଶ. As subjects 
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are assumed to be independent, the covariance between observations from different subjects, 
irrespective of time, will be 0. 

The compound symmetry pattern for the variance-covariance in matrix notation for 4 time 
points for subject i is expressed as: 

V =

⎣
⎢
⎢
⎢
⎡
𝜎జ

ଶ + 𝜎ଶ 𝜎జ
ଶ 𝜎జ
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ଶ
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ଶ 𝜎జ
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ଶ + 𝜎ଶ⎦
⎥
⎥
⎥
⎤

. 

Expressing the covariance as a correlation yields the intraclass correlation (ICC), which is the 
ratio of the individual variance 𝜎జ

ଶ to the total variance 𝜎జ
ଶ + 𝜎ଶ [i.e., 𝐼𝐶𝐶 = 𝜎జ

ଶ/(𝜎జ
ଶ + 𝜎ଶ)]. 

This coefficient represents the degree of association of the longitudinal data within subjects, 
and specifically indicates the proportion of variance in the data attributable to individuals. 

Inference 

Hypothesis testing for the fixed effects parameters (i.e., 𝛽) generally involve the so-called 
“Wald test” [Wald, 1943], which uses the ratio of the parameter estimate to its standard error 
to determine statistical significance. These tests statistics (i.e., Z = ratio of the parameter 
estimate to its standard error) are compared to a standard normal frequency table to test the 
null hypothesis that the parameter is equal to 0. Alternatively, these Z-statistics are sometimes 
squared, in which case the resulting test statistic is distributed as chi-square on one degree of 
freedom. In either case, the p-values are identical. 

For the variance and covariance terms, there are concerns in using the standard errors in 
constructing Wald test statistics, particularly when the population variance is thought to be 
near zero and the number of subjects is small [Bryk and Raudenbush, 1992]. This is because 
variance parameters are bounded; they cannot be less than zero and so using standard normal 
for the sampling distribution is not reasonable. As a result, we will not include the Wald tests 
for variance and covariance terms in these Training Courses. 

When comparing nested models, the likelihood ratio test can be used to perform uni- or multi-
parameter hypothesis tests. For this, one compares the difference in model deviance values 
(i.e., -2 log L) to a chi-square distribution, where the degrees of freedom equal the difference in 
the number of parameters between the two models. It should be noted that while use of the 
likelihood ratio tests for fixed effects is not problematic, for variance and covariance terms this 
test also suffers from the variance boundary problems mentioned above [Verbeke and 
Molenberghs, 2000]. Based on simulation studies, it can be shown that the likelihood ratio test 
is too conservative (for testing null hypotheses about variance and covariance parameters), 
namely, it does not reject the null hypothesis often enough. This would then lead to accepting a 
more restrictive variance-covariance structure than is correct. As noted by Berkhof and Snijders 
[2001], this bias can be largely corrected by dividing the p-value obtained from the likelihood 
ratio test (of variance and covariance parameters) by two. 
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TBIMS National Dataset 

Throughout these LDA Training Courses we will consider data from the Traumatic Brain Injury 
Model Systems (TBIMS) National Database (NDB). A detailed description of the TBIMS 
longitudinal study can be found at https://www.tbindsc.org/. Briefly, consenting participants 
who have had a moderate to severe TBI are enrolled in the TBIMS NDB during their inpatient 
rehabilitation stay at one of 23 (16 currently funded) TBIMS Centers in the United States. 
During their inpatient rehabilitation treatment stay, pre-injury, injury, and rehabilitation 
characteristics are collected by trained data collectors through medical record abstraction and 
patient/family interview. Follow-up interviews assessing functional, social, emotional, and 
medical outcomes are conducted by trained data collectors following standardized procedures 
at 1, 2, 5 years post-injury, and every 5 years thereafter. Currently (April 2021), the TBIMS NDB 
has data from over 18,500 participants and more than 70,000 follow-up interviews, with the 
longest follow-up out to 30 years post-injury, making it the largest longitudinal database on 
moderate to severe traumatic brain injury in the world. In this LDA Training Course, we will 
focus on the longitudinal relationship of Satisfaction with Life Scale (SWLS) over time 1 to 10 
years post injury. SWLSTOT is the total score derived by summing the 5 SWLS items (each 
scored 1-7) and ranges from 5 to 35, with higher scores indicative of higher satisfaction with 
life. 

A de-identified, limited analytic dataset has been prepared in SAS and can be downloaded from 
https://www.tbindsc.org/Researchers.aspx. In this dataset, SWLSTOT is self-report from 
participants (not proxy interview) at follow-up years 1, 2, 5, and 10 post-injury. There is a 2 
month window around year 1 follow-up, a 3 month window around year 2 follow-up, and a 6 
month window around 5 and 10 year follow-ups. Specific dates for injury and follow-up are 
available and could be used to compute time post-injury more specifically for each subject; 
however, for simplicity TIME will be considered to be 1, 2, 5, and 10 years for each subject. We 
selected participants with injury dates between March 1996 and September 2007, so that 10 
year follow-up data on SWLS would be due for all subjects in the sample. We further selected 
participants who were followed (not by proxy) and had complete SWLS data for at least 2 (of 4) 
time points. The analytic data set includes a total of 4130 individuals. Age at injury (AGE), sex 
from medical records (SEX), and self-reported race/ethnicity (RACE) were collected during 
inpatient rehabilitation and will be used as time invariant covariates. These variables are 
summarized in Figure 2. Additional variables in the dataset will be introduced later in the 
Training Courses as needed. 
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Figure 2: Summary of TBIMS Analytic Data Set 

TBIMS LDA Analytic Dataset 

CenterID = values range from 1 to 23 (de-identified; not the same as TBIMS CenterID) 

SubjectID = 1, 2, …, Nk (where Nk represents the total number of subjects for the kth 
center; de-identified and recoded so that SubjectID is nested within CenterID) 

CSubID = Center || SubID 

FirstObs = 1 if first row for subject; 0 otherwise 

SWLSTOT = SWLS score at follow-up (5-35); continuous 

TIME = 1, 2, 5, 10; continuous 

AGE = Age at injury (range 16-99); continuous 

SEX = Male (0), Female (1); dichotomous 

RACE = White (0), Black (1), Hispanic (2), Other (3); categorical 

TIMEY1CENT = TIME – 1 = 0, 1, 4, 9 (so that time = 0 represents Year 1); continuous 

AGECENT = AGE – 34.78 (sample mean age); range -18.78 to 52.22; continuous 

The analytic dataset is presented in a “stacked” format, with each row representing a unique 
time point for each subject. CenterID has been deidentified and ranges from 1-23. We also 
recoded SubjectID to be nested within CenterID. That is, SubjectID = 1, 2, 3, …., Nk for all 
centers. This is done to de-identify the data but also to improve efficiency of model estimation 
in SAS. A subset of the data for the first two subjects from the first two centers is shown below 
in Figure 3. 

Figure 3: Sample of Analytic Data 
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In Table 1, we present the observed sample sizes, SWLS means, standard deviations, and 
percentiles (0, 25, 50, 75, 100) across the 4 study time points for the sample of 4130 subjects. 
From these data, we see the mean SWLS increases slightly over time (21.46 to 22.39). 
Additionally, it appears from the standard deviations and percentiles that the spread remains 
relatively stable over time (8.21-8.31). 

Table 1: Observed SWLS Means, Standard Deviations (SD), and N across Time 

Time N Mean SWLS (SD) SWLS Percentiles 

Year 1 3569 20.90 (8.28) [5, 14, 22, 28, 35] 

Year 2 3531 21.55 (8.34) [5, 14, 23, 29, 35] 

Year 5 3329 22.03 (8.34) [5, 15, 23, 29, 35] 

Year 10 3062 22.16 (8.31) [5, 15, 23, 29, 35] 

Pairwise correlations of the repeated SWLS outcomes are given in Table 2. There is variability in 
the correlations (0.50 – 0.64) over time suggesting a compound symmetric structure (requiring 
all these to be equal) may be too restrictive. The correlations follow the commonly seen 
pattern of diminishing in value as one goes further away from the diagonal. Repeated measures 
are less correlated the further away they are in time. 

Table 2: Pairwise correlations in SWLS (N = 2550 – 3238); all significant at p < 0.0001 

 Y1 Y2 Y5 Y10 

Y1 1 0.64 0.54 0.50 

Y2 0.64 1 0.62 0.54 

Y5 0.54 0.62 1 0.62 

Y10 0.50 0.54 0.62 1 

The so called “spaghetti plots” of the data are presented in Figure 4. Each line represents the 
observed data from each individual, colored by center (left panel) or by subject (right panel). 
When dealing with a large number of subjects (even > 100), spaghetti plots of all subjects can 
be overwhelming and often look like an ink blotter as seen in the left panel of the Figure.  
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Figure 4: Spaghetti Plots for all subjects (left) colored by center and a random subset (right) 
colored by subject 

  

This can be simplified by examining a random subset of the sample as shown in the right panel 
of the Figure. These plots can be useful in assessing the overall aspects of the data. For 
example, the spaghetti plots here suggest there is considerable heterogeneity between subjects 
in the initial SWLS at year 1, and the SWLS trajectory through year 10. Some subjects show 
increasing trajectories, some show decreasing trajectories, and others show initial decreases 
from year 1 to 2, followed by increased through years 5 and 10. It is helpful to keep an eye out 
for any meaningful trends observable by eye such as increasing/decreasing variance over time, 
pronounced linear or curvilinear trends over time, center or other clustering differences, and 
missing data patterns. 

Example 1: Simple Linear Regression Model 

We start this demonstration with the very basic simple linear regression model presented in 
equation (1). This is a simple linear regression model with only time as a regressor, where time 
is treated as a continuous variable taking on values of 1, 2, 5, and 10. This model does not 
include any random effects and assumes no correlation in the repeated measures over time. 
We present it here for completeness and reference. The estimated model parameters are 
summarized in Table 3. 
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Table 3: Simple Regression Model 

Parameter Estimate SE Z p-value 

𝛽 21.11 0.11 183.89 < 0.0001 

𝛽ଵ 0.12 0.02 5.87 < 0.0001 

𝜎ଶ 69.25 0.84   

-2LL 95463.9    

AIC 95465.9    

Note: -2LL = -2 Log Likelihood; AIC = Akaike Information Criteria = 2k-2LL, where k = number of 
model parameters; SE = Standard Error 

If we assume no correlations, the intercept is estimated to be 21.11, and the linear slope is 
estimated to be 0.12. Thus, at time=0 SWLS scores are 21.11 and for each 1 year increase in 
time SWLS scores are estimated to increase by 0.12. As the range of time for our data is 
between 1 and 10 years, the intercept is not particularly meaningful (and certainly not 
interpretable as expected SWLS scores pre-injury or soon after injury). The estimate is 
meaningful as a part of the linear equation in (1) and can be interpreted as the underlying level 
of response in the population. It is also used to estimate means at each post injury year, along 
with the estimate of the slope. Specifically, 𝑦ො(𝑡) = 21.11 + 0.12 × 𝑡, where t denotes year post 
injury. These estimated SWLS means at each year are summarized in Table 4 along with the 
observed SWLS means. 

Table 4: Observed and Expected (Simple Linear Regression Model) Mean SWLS 

 Year 1 Year 2 Year 5 Year 10 

Observed 20.90 21.55 22.03 22.16 

Estimated 21.23 21.36 21.72 22.30 

A test of the intercept is also not meaningful, as it tests if the intercept (at time 0) is 
significantly different from 0; the Z-statistic and p-value are not interpreted here. A test of the 
slope parameter is meaningful, and it is our key parameter of interest. It test if the population 
change over time is different than 0. Here the slope of 0.12 is positive and significantly different 
than 0 (p < 0.0001). The residual error (assumed to be constant over time) is estimated to be 
69.25 which is close to the variance (standard deviation squared) in SWLS scores observed 
across time (68.56-69.56). 

Example 2: Random Intercepts MRM 

Next, we demonstrate the random intercepts model corresponding to equation (2). We are 
extending the simple linear regression model in (1) by incorporating a random intercept term 
for each subject. Although our descriptive analysis suggested that a compound symmetric 
structure may be too simplistic, we will fit the random-intercept model here to demonstrate 
the extension from simple linear regression and before further extending it to account for more 



P a g e  | 12 
 

Copyright © Jessica M. Ketchum, all rights reserved 

complex modeling structures that may be more practical. The results from fitting this model 
using residual (restricted) maximum likelihood (REML) estimation are summarized in Table 5. 

Table 5: Random Intercepts Model 

Parameter Estimate SE Z p-value 

𝛽 20.96 0.12 168.06 < 0.0001 

𝛽ଵ 0.12 0.01 8.16 < 0.0001 

𝜎జబ
ଶ  39.65 1.09   

𝜎ଶ 29.56 0.43   

-2LL 90839.9    

AIC 90843.9    

Note: -2LL = -2 Log Likelihood; AIC = Akaike Information Criteria = 2k-2LL, where k = number of 
model parameters; SE = Standard Error 

Focusing first on the estimated regression parameters, this model estimates the population 
intercept as 20.96 and the slope as 0.12. Thus, at time=0 SWLS scores are estimated to be 20.96 
and estimated to increase by 0.12 each year. The slope is statistically significant (p < 0.0001) 
and the total change in SWLS from 1 to 10 years is estimated to be about 1.4. The estimated 
intercept and slope are to calculate estimated values of mean SWLS at each timepoint. 
Specifically, 𝑦ො(𝑡) = 20.96 + 0.12 × 𝑡. These are shown in Table 6 along with observed mean 
SWLS. Comparing the estimated to observe means in indicates the random intercept model 
provided a good fit of these observed means. 

Table 6: Observed and Expected (Random Intercept Model) Mean SWLS 

 Year 1 Year 2 Year 5 Year 10 

Observed 20.90 21.55 22.03 22.16 

Estimated 21.07 21.19 21.54 22.12 

The model fit of the variances and covariances can also be examined. Here, the total estimated 
variance, which is assumed to be constant over time, is 39.65 + 29.56 = 69.20, or expressed as a 
standard deviation yields 8.32. Since the observed standard deviations in Table 1 do not change 
much over time (8.28-8.34), the estimate of a constant variance over time seems reasonable. 
Turning to the correlations of the repeated measures, the intraclass correlation here equals 
ICC=39.65/69.20 = 0.57, which indicates that 57% of the unexplained variance in SWLS scores 
(i.e., the part of SWLS not explained by the liner effect of time) is at the individual level (over 
half!). Thus, subjects display considerable heterogeneity in SWLS scores. Comparing this value 
of 0.57 to the observed correlation matrix in Table 2 suggests a good fit of the observed 
correlation structure. 

Comparing the results from the random intercept model to the simple linear regression model 
we see that the regression parameter estimates are in close agreement, although their 
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standard errors are different. We note that what a simple linear regression lumped together 
into error variance (68.29 or 68.15), the random intercepts model separates into within subject 
(39.03) and between subject (29.13) variances. 

In this model, we have allowed each individual to have their own deviation from the average 
trend in terms of the intercept term only. This assumed that the change over time was the 
same for all individuals; which is highly restrictive. In the next training module, we will extend 
the model to allow for each individual to have their own trend. We will also discuss how to 
recode time so that the intercept is more meaningful in the context of our example. 
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